Cloud-Modified CESM1 Historical and RCP8.5 5-Member Ensemble

d651069
 
Abstract:

The relative importance of radiative feedbacks and emissions scenarios in controlling surface warming patterns is challenging to quantify across model generations. We analyze three variants of the Community Earth System Model (CESM) with differing equilibrium climate sensitivities (ECS) under identical CMIP5 historical and high-emissions scenarios. CESM1, our base model, exhibits Arctic-amplified warming with the least warming in the Southern Hemisphere middle latitudes. A variant of CESM1 with enhanced extratropical shortwave cloud feedbacks shows slightly increased late-21st Century warming at all latitudes. In the next-generation model, CESM2, global-mean warming is also slightly greater, but the warming is zonally redistributed in a pattern mirroring cloud and surface albedo feedbacks. However, if the nominally equivalent CMIP6 scenario is applied to CESM2, the redistributed warming pattern is preserved, but global-mean warming is significantly greater. These results demonstrate how model structural differences and scenario differences combine to produce differences in climate projections across model generations.

Temporal Range:
1850 to 2100
Variables:
Latent Heat Flux Rain Sea Level Pressure Specific Humidity
Upper Air Temperature U/V Wind Components Vertical Wind Velocity/Speed
Vertical Levels:
See the detailed metadata for level information.
Data Types:
Grid
Data Contributors:
UCAR/NCAR/CGD
Climate and Global Dynamics Division, National Center for Atmospheric Research, University Corporation for Atmospheric Research
Total Volume:
0.0 MB
Data Formats:
Metadata Record:
Data License:
Citation counts are compiled through information provided by publicly-accessible APIs according to the guidelines developed through the https://makedatacount.org/ project. If journals do not provide citation information to these publicly-accessible services, then this citation information will not be included in RDA citation counts. Additionally citations that include dataset DOIs are the only types included in these counts, so legacy citations without DOIs, references found in publication acknowledgements, or references to a related publication that describes a dataset will not be included in these counts.